
ls: cannot open directory .: Stale file handle
Linux에서 파일 목록을 확인하다가 위와 같은 오류가 보일 때가 있습니다.
원인
- NFS(네트워크 스토리지)가 순간적으로 접속이 끊겼거나 마운트가 해제되었을 때
- ls 하는 디렉토리가 삭제된 경우
해결책은 마운트를 점검하거나 다른디렉토리로 이동한 후 다시 해보면 되는 것이 전부입니다.
Click Prediction 모델은 사용자가 클릭할 가능성이 높은 광고를 예측하는 기계학습 모델을 말합니다.
광고 뿐만 아니라 쇼핑몰의 상품배열이나 노출, 검색 결과의 노출 여부나 랭킹에서도 많이 쓰입니다.
네이버쇼핑, 쿠팡 같은 이커머스(e-commerce)에서도 매우 중요하게 쓰이는 기계학습 콤포넌트입니다.
Python을 사용하여 Click Prediction 모델을 만드는 간단한 예제입니다.
Click Prediction 모델을 만들기 위해서는 먼저 데이터를 불러와야 합니다. 이번 예제에서는 Kaggle에서 제공하는 Click Prediction 데이터를 사용하겠습니다. 데이터는 다음과 같은 링크에서 다운로드할 수 있습니다: https://www.kaggle.com/c/avazu-ctr-prediction/data.
import pandas as pd
data = pd.read_csv('train.csv', nrows=100000)
여기서 train.csv
는 데이터 파일의 경로를 의미합니다. nrows
파라미터를 사용하여 데이터의 일부분만 불러올 수 있습니다.
모델을 만들기 위해서는 데이터를 전처리해야 합니다. 이번 예제에서는 데이터에서 필요한 feature만 추출하고, 범주형 변수를 One-Hot Encoding하는 것으로 전처리를 마칩니다.
features = ['C1', 'banner_pos', 'site_category', 'app_category', 'device_type', 'device_conn_type']
data = pd.get_dummies(data[features])
데이터에서 features
에 해당하는 feature만 추출하고, pd.get_dummies()
함수를 사용하여 범주형 변수를 One-Hot Encoding합니다.
전처리된 데이터를 기반으로 모델을 학습합니다. 이번 예제에서는 LightGBM이라는 머신러닝 라이브러리를 사용하여 모델을 학습합니다.
import lightgbm as lgb
X = data.drop('click', axis=1)
y = data['click']
train_data = lgb.Dataset(X, label=y)
params = {
'objective': 'binary',
'metric': 'auc',
'boosting_type': 'gbdt',
}
model = lgb.train(params, train_data, num_boost_round=100)
전처리된 데이터에서 click
feature를 제외한 나머지 feature를 X
에 저장하고, click
feature를 y
에 저장합니다. 그리고 lgb.Dataset()
함수를 사용하여 학습 데이터를 생성합니다. 생성된 학습 데이터를 기반으로 모델을 학습합니다.
학습된 모델을 평가합니다. 이번 예제에서는 AUC(Area Under the Curve)를 사용하여 모델을 평가합니다.
from sklearn.metrics import roc_auc_score
y_pred = model.predict(X)
roc_auc_score(y, y_pred)
AUC가 높을수록 모델의 성능이 좋다는 것을 의미합니다.
학습된 모델을 사용하여 Click Prediction을 수행합니다.
test_data = pd.read_csv('test.csv')
test_data = pd.get_dummies(test_data[features])
y_pred = model.predict(test_data)
test.csv
파일을 불러와서 전처리를 한 후, 학습된 모델로 Click Prediction을 수행합니다.
이상으로 Python을 사용하여 Click Prediction 모델을 만드는 예제를 마치겠습니다.
이 예제를 참고하여, 다양한 Click Prediction 만들어 볼 수 있겠습니다.
그리고, 이 예제에서는 LightGBM 라이브러리를 사용하여 모델을 학습하였지만, 다른 머신러닝 라이브러리 또한 사용할 수 있습니다. 이를 통해, 다양한 머신러닝 라이브러리를 비교하여 어떤 라이브러리가 Click Prediction 모델에 더 적합한지 알아볼 수 있습니다.
머신 러닝 분야에서 평가 지표는 모델이 얼마나 잘 동작하는지를 측정하는 데 중요한 역할을 합니다. 이 중에서도 다중 클래스 분류 문제에서는 클래스별 성능을 평가하는 데 있어서 다양한 방법들이 있습니다. 그 중에서도 대표적으로 사용되는 방법으로는 Macro-average와 Micro-average가 있습니다.
Macro-average는 클래스별 성능 지표를 각각 계산한 후 평균을 내는 방식입니다. 이 방법은 클래스별 데이터 셋이 균등하게 분포되어 있을 때 적합합니다. 예를 들어, 10개의 클래스가 있는 다중 클래스 분류 문제에서 5개의 클래스는 100개의 데이터를 가지고 있고, 나머지 5개의 클래스는 10개의 데이터만 가지고 있다고 가정해 봅시다. 이 경우, Macro-average는 모든 클래스의 성능을 동일하게 취급하므로, 각 클래스의 데이터 수에 관계 없이 모든 클래스가 동일한 비중으로 반영됩니다.
다음은 Macro-average를 계산하는 과정입니다. 클래스 개수가 k개라고 할 때,
Micro-average는 클래스별로 성능 지표를 계산하기 전에 모든 클래스를 하나의 클래스로 간주하고 전체적인 성능 지표를 계산합니다. 이 방법은 클래스별 데이터 수가 다르더라도 모든 클래스의 성능을 동일하게 고려하므로, 클래스별 데이터 수가 차이가 많이 나는 문제에서 유용합니다.
다음은 Micro-average를 계산하는 과정입니다.
이제 간단한 예시를 들어보겠습니다. 다음과 같은 3개의 클래스(0, 1, 2)가 있고, 각각의 클래스에 대해 TP, FP, FN, TN의 개수가 다음과 같다고 가정해 봅시다.
클래스 | TP | FP | FN | TN |
---|---|---|---|---|
0 | 10 | 2 | 3 | 85 |
1 | 15 | 4 | 7 | 81 |
2 | 8 | 1 | 4 | 94 |
이 경우, Macro-average와 Micro-average를 각각 계산해 보겠습니다.
클래스 | TP | FP | FN | TN |
---|---|---|---|---|
0 | 10 | 2 | 3 | 85 |
1 | 15 | 4 | 7 | 81 |
2 | 8 | 1 | 4 | 94 |
클래스 | Precision | Recall | F1-score |
---|---|---|---|
0 | 0.8333 | 0.7692 | 0.8000 |
1 | 0.7895 | 0.6818 | 0.7317 |
2 | 0.8889 | 0.6667 | 0.7619 |
$$ \text{Macro-average Recall} = \frac{0.7692+0.6818+0.6667}{3} = 0.706 \\\\ \text{Macro-average F1-score} = \frac{0.8000+0.7317+0.7619}{3} = 0.764 $$
1. 전체 데이터셋에서 TP, FP, FN, TN 계산
전체 데이터셋 | TP | FP | FN | TN |
33 | 7 | 14 | 260 |
2. 전체 데이터셋에서 Precision, Recall, F1-score 계산
$$ \text{Micro-average Precision} = \frac{33}{33+7} = 0.825 \\\\ \text{Micro-average Recall} = \frac{33}{33+14} = 0.702 \\\\ \text{Micro-average F1-score} = 2 \times \frac{0.825 \times 0.702}{0.825 + 0.702} = 0.759 $$
이처럼 average Micro-average는 다중 클래스 분류 문제에서 클래스별 성능을 평가하는 데 사용되는 방법 중 두 가지입니다. Macro-average는 클래스별 데이터셋이 균등하게 분포되어 있을 때 유용하며, Micro-average는 클래스별 데이터 수가 차이가 많이 나는 문제에서 유용합니다.
어떤 방법을 선택할지는 데이터셋의 특성에 따라 달라질 수 있습니다.
예를 들어, 클래스별로 데이터 수가 크게 차이가 나지 않고 균등하게 분포된 경우에는 Macro-average를 사용하는 것이 적절할 수 있습니다.
반면에 클래스별로 데이터 수가 크게 차이가 나는 경우에는 Micro-average가 더 적절할 수 있습니다.
클래스별로 데이터가 균등한지 아닌지는 카이제곱검정을 하면 알 수 있습니다.
또한, Macro-average는 클래스별 성능을 독립적으로 평가하기 때문에, 각 클래스가 동등하게 중요한 경우에 적합합니다. 반면에 Micro-average는 모든 클래스가 동일한 중요도를 가지는 것이 아니라, 전체적인 성능이 중요한 경우에 적합합니다.
마지막으로, Macro-average와 Micro-average는 모델의 성능을 평가하기 위해 단독으로 사용하기 보다는, 다른 지표와 함께 사용하는 것이 좋습니다. 또한, 클래스별로 데이터 수가 매우 작거나 없는 경우에는 이를 해결하기 위해 Weighted average 방법을 사용하기도 합니다. 이는 클래스별 데이터 수를 고려하여 평균을 계산하는 방법으로, Macro-average와 Micro-average의 중간 형태라고 볼 수 있습니다. 이러한 방법들을 적절히 사용하여 다중 클래스 분류 모델의 성능을 정확하게 평가할 수 있습니다.
숫자를 다룰 때 가장 많이 사용하는 함수 들은 “floor”, “truncate”, “ceil”, “round”입니다. 이 함수들은 수학적인 개념을 기반으로 하고 있으며, 숫자를 다룰 때 유용하게 사용됩니다. 이번 포스트에서는 “floor”, “truncate”, “ceil”, “round” 함수의 차이점과 각각의 사용 예시에 대해 살펴보겠습니다.
“floor” 함수는 입력된 숫자보다 작거나 같은 가장 큰 정수를 반환합니다. 예를 들어, 3.14의 floor 값은 3이 됩니다.
pythonCopy codeimport math
print(math.floor(3.14)) # 3
print(math.floor(-3.14)) # -4
“truncate” 함수는 입력된 숫자의 소수점 이하를 제거하여 반환합니다. 양수인 경우 “floor” 함수와 같은 결과를 출력하고, 음수인 경우 “ceil” 함수와 같은 결과를 출력합니다. 예를 들어, 3.14의 truncate 값은 3이 됩니다.
import math
def truncate(n, decimals=0):
multiplier = 10 ** decimals
return int(n * multiplier) / multiplier
print(truncate(3.14)) # 3.0
print(truncate(-3.14)) # -3.0
“ceil” 함수는 입력된 숫자보다 크거나 같은 가장 작은 정수를 반환합니다. 예를 들어, 3.14의 ceil 값은 4가 됩니다.
import math
print(math.ceil(3.14)) # 4
print(math.ceil(-3.14)) # -3
“round” 함수는 입력된 숫자를 반올림하여 반환합니다. “round” 함수는 두 개의 인수를 받습니다. 첫 번째 인수는 반올림할 숫자이고, 두 번째 인수는 반올림할 자릿수입니다. 예를 들어, 3.14를 소수점 첫째 자리에서 반올림한 값은 3.1이 됩니다.
import math
print(round(3.14)) # 3
print(round(3.75)) # 4
print(round(-3.14)) # -3
print(round(3.141592, 2)) # 3.14
이상으로 “floor”, “truncate”, “ceil”, “round” 함수의 차이점과 사용 예시에 대해 알아보았습니다. 이 함수들은 숫자를 다룰 때 매우 유용하며, 데이터 분석, 수치 계산 등 다양한 분야에서 사용됩니다. 적절한 함수를 사용하여 정확하고 효율적인 작업을 수행할 수 있도록 노력해야 합니다.
커맨드라인 어플리케이션은 콘솔 어플리케이션 이라고도 합니다. 커맨드라인 어플리케이션은 텍스트 인터페이스로 사용하도록 설계된 컴퓨터 프로그램입니다. 쉘 이 그 예입니다. 커맨드라인 어플리케이션은 일반적으로 다양한 인자를 입력값으로 받습니다. 파라미터로 받기도 하고 서브커맨드, 옵션, 플래그, 스위치로도 받습니다.
유명한 커맨드라인 어플리케이션을 모아봤습니다:
click 은 최소한의 코드만으로 커맨드라인 인터페이스를 구성할 수 있도록 해주는 파이썬 패키지입니다. 이 “Command-Line Interface Creation Kit” 은 상세한 설정이 가능하지만 그냥 기본값으로 사용해도 아주 좋습니다.
docopt 는 가볍고도 아주 파이썬다운 패키지로서 포직스 스타일의 사용법을 파싱하여 커맨드라인 인터페이스를 직관적이고도 쉽게 만들 수 있게 해주는 라이브러리입니다.
Plac 은 파이선 표준 라이브러리 argparse 를 선언형 인터페이스를 사용해 그 복잡성을 숨기는 간단한 랩퍼입니다. 매개변수 파서는 명령형으로 작성할 필요가 없습니다. 그냥 추론됩니다. 이 모듈은 복잡한 걸 원치 않는 사용자, 프로그래머, 시스템 관리자, 과학자 및 일회용 스크립트를 작성하는 대신 커맨드라인 인터페이스를 빠르고 간단하게 개발하고자 하는 사람들을 대상으로합니다.
Cliff 는 커맨드라인 프로그램을 개발하기 위한 프레임워크입니다. setuptools를 엔트리포인트로 사용하여 서브캐맨드, 출력 포맷터 및 기타 확장을 제공합니다. 이 프레임워크는 svn
과 git
처럼 다단계 명령을 만드는 데 사용됩니다. 여기서 메인 프로그램은 몇 가지 기본적인 인자값 구문 분석을 처리한 다음 서브커맨드를 호출하여 작업을 수행합니다.
Cement 는 진보된 CLI 어플리케이션 프레임워크입니다. 그 목표는 간단한 커맨드라인 애플리케이션과 복잡한 커맨드라인 어플리케이션 모두를 위한 표준 및 기능이 풍부한 플랫폼을 도입하고 품질 저하없이 신속한 개발 요구 사항을 지원하는 것입니다. 시멘트는 유연하며 그 사용 사례는 간단한 마이크로 프레임워크에서 복잡한 대규모 프레임워크에 이르기까지 다양합니다.
Python Fire 는 파이썬 객체를 전혀 사용하지 않고도 자동으로 커맨드라인 인터페이스를 생성하는 라이브러리입니다. 커맨드라인에서 파이썬 코드를 보다 쉽게 디버깅하고, 기존 코드에 대한 CLI 인터페이스를 생성하고 REPL에서 인터렉티브하게 코드를 탐색하고, 파이썬과 Bash(아니면 다른 쉘) 간의 전환을 단순화 할 수 있습니다.