R 3.5.0 릴리즈 – Joy in playing

지난 2018-04-23에 R 3.5.0이 릴리즈 되었습니다.
이전 버전은 R 3.4.4입니다.
R 3.5.0의 닉네임은 “Joy in playing”이고 늘 그래왔듯이 이 닉네임도 만화 피너츠에 나오는 대사입니다.

https://www.gocomics.com/peanuts/1973/01/27

R 3.4.x에서 앞자리 숫자가 바뀌면서 R 3.5.0으로 올라가면서 이전의 버전업에  비해서 업데이트 내역이 조금 많습니다.

꽤 많아서 나열하기는 힘들고 그 중에서 체감할 수 있는 가장 중요한 업데이트는 R에 설치되는 패키지가 설치할 때 모두 bytecode로 컴파일 된다는 것입니다.

그래서 바로 버전업을 하면 예상치 못한 문제가 발생할 여지가 많아서 사용하던 패키지가 이상하게 작동하거나 RStudio가 오작동 한다거하는 문제가 있을 수 있습니다.

버전업을 조금 미루시거나 RStudio를 최신으로 빠르게 반복해서 업데이트 해 주는 것이 필요할 것 같습니다.

R팁 – 두 벡터의 모든 멤버가 동일한지 비교하기 all.equal

두 벡터가 동일한지 비교하는 간단한 팁입니다.

R은 벡터(vector)와 스칼라(scala)의 구분이 없이 사실은 모든 변수를 벡터로 취급하기 때문에 다른 언어에는 없는 몇 가지 문제가 생깁니다. 이것도 그것과 관련이 있습니다.

두 벡터, 즉 2개의 변수가 있고 변수가 모두 length가 2 이상일 때 두 벡터가 완전히 동일한지 비교할 때 아래의 코드에서 첫번째 if구문과 같은 실수를 합니다.

위의 예제 코드에서 첫번째 if 구문은 상식적으로 의도한 대로 작동하지 않습니다.   == 연산자가 두 변수의 첫번째 요소(first element)만을 비교하기 때문에 두 벡터가 같다고 나옵니다.

물론 다음과 같은 경고 메세지를 콘솔창에 뿌려주기 때문에 문제가 있다는 것을 알 수는 있습니다. 무심결에 경고메세지를 무시해 버리면 큰 문제가 생길 수 있습니다.

만약 두 벡터의 멤버가 모두 동일한지 비교하려면 처음 코드에서 두 번째 사용한 if 구문처럼 all.equal을 사용해야 합니다.

코드를 조금 고쳐서 다음과 같은 것을 실행해 보세요.

사실 R을 사용해서 작업을 할 때 두 벡터가 완전히 동일한지 비교할 일이 별로 없습니다. 그래서 새까맣게 까먹고 있다고 가끔 실수를 저지를 때가 있습니다.

유클리디안 유사도 – Euclidean Similarity

유클리디안 유사도는 원래 유클리디안 거리(Euclidean distance)라고 말하는 것이 맞는 것 같습니다. 유클리디안 유사도는 다소 이상한 단어의 조합이라는 생각이 듭니다. 하지만 유클리디안 유사도라는 말도 많이 통용되므로 이 포스트에서도 그렇게 하기로 하겠습니다.

유클리디안 유사도(Euclidean similarity)는 유클리디안 거리를 구해서 두 벡터의 유사도로 사용한다는 뜻입니다.

유클리디안 거리는 기학적으로 볼 때 두 점의 직선거리를 구하는 것입니다.  선형대수에서 주로 다루는 벡터 스페이스(Vector space)라고 불리는 선형 공간에서도 동일하게 최단 거리를 구하는 것을 말합니다.

코사인 유사도를 설명할 때 언급한 적이 있습니다만 유사도는 2개의 데이터만 가지고 계산해서는 아무짝에도 쓸모가 없습니다.

세상에 사람이 둘 만 남았다면 두 사람은 서로 닮은 걸까요? 안 닮은 걸까요?

유사도는 다음과 같은 방식으로 주로 사용합니다.

  1. 여러 개의 데이터에서 주어진 것과 가장 가까운 것이 어떤것인가?
  2. 여러 개의  데이터에서 가장 가까운 것들끼리 묶어보자

유클리디안 거리는 데이터마이닝이나 기계학습에 익숙하시다면 K-means 같은 것에서 사용하는 것을 본 적이 있을 것입니다. 유사도라는 것이 사실은 거리를 측정하는 방법(distance measurement)일 수 밖에 없습니다. 거리를 측정하는 방법을 어떤 것을 쓰느냐에 따라 이름을 무슨 무슨 유사도 이렇게 붙여서 부릅니다.

유클리디안 거리를 구하는 방법은 간단하고 매우 쉽습니다.
피타고라스 정리를 쓰면 됩니다.

위키피디아를 보면 그림을 이렇게 설명해 놨습니다.

눈 아프구요.

p와  q의 유클리디안 거리는 p와 q의 직선거리를 구하면 되는 것이고 그림을 보면 직각삼각형이니까 피타고라스 정리를 쓰면 됩니다.

참고로 피타고라스 정리가 고차원에서도 되는 건지 헷갈릴 수 있겠습니다.  당연히 3차원 이상에서도 적용이 됩니다.  3차원, 4차원, 5차원, …, R차원 다 됩니다.

증명법도 어렵지 않지만 유명한 수학자들이 된다고 했으니 그냥 믿고 쓰시면 됩니다.

5차원인 경우를 예를 들어서 설명하면
아래와 같이 2개의 5차원 벡터가 있다고 하고

a = (1, 2, 3, 4, 5)
b = (2, 3, 4, 5, 6)

벡터의 멤버수가 5개씩이므로 둘 다 5차원 벡터입니다.  차원이 다르면 안됩니다. 맞춰 줘야지요.

각각 차원(축)을 맞춰서 순서때로 빼준 다음에 제곱해서 더한 다음에 루트를 씌우면 됩니다.

1번째 차원: 1 – 2를 계산해서 제곱 = 1
2번째 차원: 2 – 3을 계산해서 제곱 = 1
3번째 차원: 3 – 4를 계산해서 제곱 = 1
4번째 차원: 4 – 5를 계산해서 제곱 = 1
5번째 차원: 5 – 6를 계산해서 제곱 = 1

다 더한 다음에 루트

sqrt(1 + 1 + 1 + 1 + 1)

답은 2.236068 입니다.

R코드로는 이렇게 하면 됩니다.

추가로 유클리디안 거리는 양적인 것을 기반으로 하는 것이라서 축의 스케일이 맞지 않으면 이상한 측정이 됩니다.  축의 스케일을 맞춰야 할지 말아야 할지는 그때 그때 다릅니다.

이런 말이 나오면 항상 골치만 아픕니다만 어쨌든 뭐든 쉽게 쓸 수 있는 것은 없는 것 같습니다.

예를 들면 이런 경우입니다.

a = (1, 2, 3000000, 4, 5)
b = (2, 3, 4000000, 5, 6)
c = (3, 4, 5000000, 6, 7)

3번째 차원, 3번째 축의 값에 의해 가장 큰 영향을 받습니다. 다른 차원의 값들은 구실을 못하게 됩니다.

기회가 되면 스케일을 맞추는 여러가지 방법도 적어 보겠습니다.