카테고리 보관물: 데이터마이닝

유클리디안 유사도 – Euclidean Similarity

유클리디안 유사도는 원래 유클리디안 거리(Euclidean distance)라고 말하는 것이 맞는 것 같습니다. 유클리디안 유사도는 다소 이상한 단어의 조합이라는 생각이 듭니다. 하지만 유클리디안 유사도라는 말도 많이 통용되므로 이 포스트에서도 그렇게 하기로 하겠습니다.

유클리디안 유사도(Euclidean similarity)는 유클리디안 거리를 구해서 두 벡터의 유사도로 사용한다는 뜻입니다.

유클리디안 거리는 기학적으로 볼 때 두 점의 직선거리를 구하는 것입니다.  선형대수에서 주로 다루는 벡터 스페이스(Vector space)라고 불리는 선형 공간에서도 동일하게 최단 거리를 구하는 것을 말합니다.

코사인 유사도를 설명할 때 언급한 적이 있습니다만 유사도는 2개의 데이터만 가지고 계산해서는 아무짝에도 쓸모가 없습니다.

세상에 사람이 둘 만 남았다면 두 사람은 서로 닮은 걸까요? 안 닮은 걸까요?

유사도는 다음과 같은 방식으로 주로 사용합니다.

  1. 여러 개의 데이터에서 주어진 것과 가장 가까운 것이 어떤것인가?
  2. 여러 개의  데이터에서 가장 가까운 것들끼리 묶어보자

유클리디안 거리는 데이터마이닝이나 기계학습에 익숙하시다면 K-means 같은 것에서 사용하는 것을 본 적이 있을 것입니다. 유사도라는 것이 사실은 거리를 측정하는 방법(distance measurement)일 수 밖에 없습니다. 거리를 측정하는 방법을 어떤 것을 쓰느냐에 따라 이름을 무슨 무슨 유사도 이렇게 붙여서 부릅니다.

유클리디안 거리를 구하는 방법은 간단하고 매우 쉽습니다.
피타고라스 정리를 쓰면 됩니다.

위키피디아를 보면 그림을 이렇게 설명해 놨습니다.

눈 아프구요.

p와  q의 유클리디안 거리는 p와 q의 직선거리를 구하면 되는 것이고 그림을 보면 직각삼각형이니까 피타고라스 정리를 쓰면 됩니다.

참고로 피타고라스 정리가 고차원에서도 되는 건지 헷갈릴 수 있겠습니다.  당연히 3차원 이상에서도 적용이 됩니다.  3차원, 4차원, 5차원, …, R차원 다 됩니다.

증명법도 어렵지 않지만 유명한 수학자들이 된다고 했으니 그냥 믿고 쓰시면 됩니다.

5차원인 경우를 예를 들어서 설명하면
아래와 같이 2개의 5차원 벡터가 있다고 하고

a = (1, 2, 3, 4, 5)
b = (2, 3, 4, 5, 6)

벡터의 멤버수가 5개씩이므로 둘 다 5차원 벡터입니다.  차원이 다르면 안됩니다. 맞춰 줘야지요.

각각 차원(축)을 맞춰서 순서때로 빼준 다음에 제곱해서 더한 다음에 루트를 씌우면 됩니다.

1번째 차원: 1 – 2를 계산해서 제곱 = 1
2번째 차원: 2 – 3을 계산해서 제곱 = 1
3번째 차원: 3 – 4를 계산해서 제곱 = 1
4번째 차원: 4 – 5를 계산해서 제곱 = 1
5번째 차원: 5 – 6를 계산해서 제곱 = 1

다 더한 다음에 루트

sqrt(1 + 1 + 1 + 1 + 1)

답은 2.236068 입니다.

R코드로는 이렇게 하면 됩니다.

추가로 유클리디안 거리는 양적인 것을 기반으로 하는 것이라서 축의 스케일이 맞지 않으면 이상한 측정이 됩니다.  축의 스케일을 맞춰야 할지 말아야 할지는 그때 그때 다릅니다.

이런 말이 나오면 항상 골치만 아픕니다만 어쨌든 뭐든 쉽게 쓸 수 있는 것은 없는 것 같습니다.

예를 들면 이런 경우입니다.

a = (1, 2, 3000000, 4, 5)
b = (2, 3, 4000000, 5, 6)
c = (3, 4, 5000000, 6, 7)

3번째 차원, 3번째 축의 값에 의해 가장 큰 영향을 받습니다. 다른 차원의 값들은 구실을 못하게 됩니다.

기회가 되면 스케일을 맞추는 여러가지 방법도 적어 보겠습니다.

TFIDF – Term Frequency Inverse Document Frequency

TFIDF(TF-IDF)에 대한 포스트입니다.

강연을 하기 위해서 전에 작성해 놓은 자료를 찾다가 못찾고 말았습니다. 그래서 혹시 이 블로그에 적어 놨는지해서 찾아봤는데 없더군요(‘ㅡ’).  결국 다시 작성해야 하게 생겼는데 했던걸 도로 하려고하니 정말 하기 싫더군요. 그래서 먼저 블로그로 포스팅을 하기로 했습니다.

이걸 강연자료로 다시 바꿀겁니다.

언제나 그렇듯이 이런 것에 대한 설명은 위키피디아에도 잘 나와 있습니다.  위키피디아의 설명이 잘 되어 있긴하지만 이해하기 쉽게 아주 자세히 된 것은 아닌 것 같습니다.

어떤 분들은 위키피디아 설명이 아주 잘되어 있다고도 하시던데 저는 대부분의 위키피디아의 내용은 너무 어렵게 적혀 있다고 생각합니다. ‘-‘;

영문 위키피디아의 내용이 한글 위키피디어 내용 보다 더 상세합니다만 영어에 압박을 느끼는 분들은 한글을 보시고 그것도 싫으시면 위키피디아를 읽는 것은 통과하셔도 됩니다.

TFIDF에 대한 내용은 누군가의 이해를 돕기 위해서 주욱 풀어서 설명하다보면 제 경험으로 내용이 매우 장황해집니다.

TFIDF는 간단히 잘 설명하기 어려운 것 중에 하나입니다.
쉽게 설명하려면 설명을 매우 길게 해야하고 길게하면 너무 늘어져서 맥락을 놓칩니다.

너무 간단하게 짧게 적어버리면 처음 접하는 분들께는 오해와 착각을 유발할 여지가 있는 부분도 생깁니다. 그것은 장황해지는 것 보다는 더 큰 문제가 있습니다.

가능한 쉽게 풀어서 쓴다는 블로그의 취지에 맞게 이 포스트는 어째든 길게 풀어서 작성하겠습니다. 장황하다는 말이지요.

긴 글을 싫어하시는 분들은 인터넷의 다른 글들도 한 번 찾아보세요. 짧게 잘 설명된 글도 많이 있습니다. 관련지식이 있는 분들은 그 정도로도 충분할 것입니다.

TFIDF는 어디 쓰이는가?

먼저 어디 쓰이는지 알면 이해하는데 도움이 될 것입니다.

검색엔진(Google, Bing, Naver 이런것들이요)이나 텍스트마이닝에서 흔히 볼 수 있을텐데요.  문서의 유사도나 중요도 같은 것을 계산하기 위해서 문서내의 단어들을 계량화(quantization)를 하는데 그 계량화를 할 때 중요한 단어와 중요하지 않은 단어를 다르게 가중치 고려하고 싶을 때 사용하는 가장 잘 알려진 방법입니다.

간단히 말해서 “문서 내의 단어들에 각각 부여한 중요도를 나타내는 숫자값” 입니다.

TFIDF의 정의

TFIDF의 포괄적인 의미에서의 정의는 이렇습니다.

여러 개의 문서가 있을 때 각 문서 내의 있는 텀(term)들에 가중치가 적용된 어떤 수치값을 부여해 놓는 방법

텀(term)이 뭔지는 뒤에서 설명합니다.

이렇게 TFIDF값을 부여해 놓고 나중에 코사인 유사도(Cosine Similarity)등을 이용해서 문서들의  유사도를 구하는데 흔히 사용합니다. (코사인 유사도는 제 블로그의 다른 포스트를 참조하셔도 되고 역시 위키피디아를 보셔도 됩니다)

TFIDF를 계산하면 문서 내에서 상대적으로 더 중요한 단어가 어떤 것인지 알 수는 있지만 그 외에 문서끼리의 유사도라든가 이런것은 계산이 되어 있지 않은 상태입니다.

즉 문서와 문서의 유사도를 구하거나 여러가지 용도로 사용하기 이전에 단어들에게 부여하는 어떤 수치라고 기억해 두고 시작하시면 됩니다.

문서는 글들이 적혀 있는 텍스트(text)를 말합니다.

TFIDF 공식

우선 TFIDF scheme 공식을 잠깐 확인하고 넘어갑니다.  당장은 이 공식이 아주 중요하지 않습니다. 그래서 너무 공식을 자세히 볼 필요는 없습니다.

초간단 버전의 공식입니다. 공식이라기 보다는 의사코드(Pseudo code)에 가깝습니다.

  \begin{aligned}  \huge{  \mbox{tf-idf}_{t,d} = \mbox{tf}_{t,d} \times \mbox{idf}_t  }  \end{aligned}

그냥 공식대로라면 TF와 IDF를 곱하면 됩니다. 물론 TF와 IDF가 뭔지는 나와있지 않습니다. 사기이지요.

밑에 제대로 된 공식이 나옵니다만 사실 기본 컨셉으로는 저 공식이 전부라고도 할 수 있습니다.

사실 TFIDF의 공식은 수치계산 부분 보다는 프로세싱을 어떻게 하는지에 대한 주변의 설명 부분이 더 많습니다. 그래서 처음보면 저 공식만 보고는 아무것도 이해할 수 없습니다.

이해를 위해서 이제 TFIDF를 각각 파트별로 3단계로 구분해서 적어보면 다음과 같습니다. 각각 TF, IDF그리고 TFIDF를 구하는 공식으로 나뉘어 있습니다.
다음은 덜 간단한 공식입니다.

\begin{aligned}\huge{t{f_{ij}} = \frac{{{f_{ij}}}}{max\{ {f_{1j}},{f_{2j}},{f_{3j}},\ldots,{t_{\left| v \right|j}} \}},}\end{aligned}

\begin{aligned}\huge{id{f_i} = \log \frac{N}{{d{f_i}}}.}\end{aligned}

\begin{aligned}\huge{{w_{ij}} = t{f_{ij}} \times id{f_i}.}\end{aligned}

하지만 주변설명이 여전히 안되어 있습니다. 이것만 가지고는 이해하는 것은 불가능합니다.

공식내에 있는 각 문자에 대한 정의나 설명도 하지 않고 f나 df같은 것을 어떻게 추출해서 뽑아내는지도 설명을 하지 않았습니다.
이것은 뒤에 설명할테니 위의 공식도 그냥 훑어 보고 넘어가셔도 됩니다.

위에 적은 공식은 텍스트마이닝의 대학원 과정의 교재에서 복사해 온 것으로 TFIDF 공식의 생김새는 대충 저렇습니다만 미리 말씀드리지만 TFIDF의 공식은 딱 1개가 아닙니다.
그래서 무조건 하나를 보고 “그게 맞다”라고 생각하시면 안됩니다. 공식은 상황이 수집된 문서의 내용들 등에 따라 다르게 변형해서 쓸 수 있습니다. 이 부분은 다른 포스트에서 기회가 되면 따로 적어보겠습니다.

내가 알고 있는 공식과 다르므로 무효! 이러시면 곤란해요

공식부분은 우선 대충 넘어가고 나중에 다시 설명하겠습니다.
이제 TFIDF란 용어의 해설부터 먼저 분해해서 확인해 보겠습니다.

TFIDF란?

앞서 설명했지만 반복해서 말하자면 TFIDF는 정보검색(그러니까 검색엔진)이나 텍스트마이닝과 관련된 곳에서 흔히 등장하는 용어입니다.  조금 구체적이면서도 간단히 정의를 적어보면 이렇습니다.

TFIDF = 검색엔진, 텍스트마이닝, 텍스트 처리와 관련된 것으로 텀에 부여된 가중치 값

TFIDF는 단어자체가 주는 알파벳의 나열과 다소 딱딱한 발음으로 인해 처음 접하는 사람들에게 공포감을 조성합니다만 알고보면 그렇게 공포스러운 것은 아닙니다.

TFIDF는 “티에프아이디에프”라고 침을 튀기면서 공격적으로 읽습니다. 발음이 주는 포스가 조금 있긴합니다.

단어를 다 풀어서 원래 제목으로 적어서 해석을 시도해 보면 좀 더 이해가 쉽습니다.  TFIDF의 원래 명칭은 다음과 같습니다.

Term Frequency  Inverse Document Frequency weighting scheme

TFIDF는 Term Frequency Inverse Document Frequency의 앞글자만 따서 줄여놓은 단어입니다.
짧게 TF-IDF weighting scheme 라고 합니다.

줄임말을 펼쳐봤지만 여전히 이해 안가기는 마찬가지일 것입니다.
다시 명칭을 단어들을 각각 더 자세히 풀어보겠습니다.

Term 텀

Term Frequency에서의 Term은 “색인어”를 말합니다. 색인어는 흔히 교과서나 기술서적의 맨 뒤에 단어를 알파벳순(또는 가나다순) 나열하고 몇 페이지에 등장하는지 적어 놓은 것을 보셨을텐데요. 거기에 있는 단어 목록을 색인어라고 합니다. 그렇게 단어들을 정리한 것들을 “색인”이라고 합니다. (Term은 원래 포괄적인 의미로 “용어”라는 뜻이긴 하지만 다소 협소한 의미이긴 하지만 여기에서는 “색인어”라고 이해하는 것이 더 도움이 될 것입니다)

색인어=Term이고 색인=Index 입니다.

IT계열에 몸을 담고 계신분들 중에 일부는 검색엔진과 관련된 용어나 RDBMS(데이터베이스)에서 인덱싱(indexing)한다고 말하는 것을 들으신 적이 있을텐데요. 그것들과 하는 것이 사실상 같아서 기계를 이용해서 색인을 만들어서 정리해 두는 것을 말합니다.

보통 책같은 것에서 색인어를 구성할 때는 책의 내용중에 포함된 중요한 명사만 골라서 색인으로 만들고 과거에는 검색엔진도 그런 방식을 사용했던 적이 있습니다.
최근의 검색엔진에서는 그렇지만은 않습니다. 검색엔진의 색인을 어떻게 구성하느냐는 하기 나름입니다.  하지만 잘 이해하기 어려우시면 우선 명사 위주로 하는 것이 검색엔진이나 텍스트마이닝에서 가장 기본적인 쉬운 방법이다라고 기억해 두시면 됩니다.

색인의 예를 간단히 적어보면 다음과 같이 색인어와 색인어의 위치를 매핑한 것입니다.

마이닝 – 23, 56, 128
텍스트 – 12, 23, 59

요약해서 어떤 단어가 어디에 있는지(어느 문서에 있는지)를 기록해 놓은 것에서 그 기록의 대상이 되는 단어들을 말합니다.

저 위에서 “마이닝”, “텍스트” 같은 것이 텀(term)입니다.

Term Frequency

Term Frequency를 그대로 해석해 보면 텀(term)의 빈도수입니다. 색인어의 빈도수를 말합니다. 즉 색인어가 몇 번 나왔는지 숫자를 센 것입니다.

Frequency를 주파수 같은 것으로 해석을 해버리시면 아주 이상해지지요.

어디에서의 빈도수인지는 설명이 안되어 있는데 특별한 언급이 없으면 어떤 한 문서내에서 색인어가 출현한 빈도수를 말합니다.

Inverse Document Frequency

Inverse는 우선 나중에 설명하고 Document Frequency(문서 빈도)부터 설명하면 다음과 같습니다.

Document Frequency = Term이 출현한  문서의 빈도수

Document Frequency는 그냥 해석하면 문서 빈도수가 될텐데요. 처음 보는 분들은 여기서 부터 조금 헷갈릴 것 같습니다.

제목에 Term이 출현한다는 말은 없지만 텀(term)이 출현하는 문서의 수를 세어 놓은 것입니다.

텍스트마이닝이나 검색엔진이 다루는 문서는 수십개에서 수십억개까지의 문서가 있을 수 있습니다. 1개는 아닙니다. 여기에서 말하는 것은 가지고 있는 모든 문서를 다 뒤져서 텀(term)이 포함된 모든 문서의 숫자를 세어 놓는다는 의미입니다.

단, 한 문서에 term이 여러번 나와도 1번(한 번)만 카운트합니다.

요약해서 다시 설명하면

  • TF(Term Frequency)는 한 문서에서 term이 몇  번 나왔는지를 모두 카운트한 것이고
  • DF(Document Frequency)는 한 단어가 몇개의 고유한 문서에서 나왔는지를 카운트한 것입니다.

이제 Inverse Document Frequecy에서 Inverse부분입니다.

Inverse = 역수

역수는 사실 초급 수학에 나오는 것이지만 기억이 안나는 분들을 위해서 다시 설명합니다. 역수는 쉽게 설명하면 어떤 수를 1로 나누라는 것입니다. 즉 1을 분자로 두고 그 숫자를 분모로 두라는 것입니다. (수학책에서는 저렇게 정의해 놓지는 않았을 것입니다만)

예를 들어 \huge{x}의 역수는 \huge{\frac{1}{x}} 입니다. \huge{x^{-1}}라고 표현하기도 합니다.

그래서

Inverse Document Frequency는 Document Frequency의 역수입니다.

\huge{idf = \frac{1}{df}}

위와 같습니다.
나누기를 하지 않고 역수를 쓴 것은 수학적으로 이쁘게 쓰기 위함도 있고 하다보니 그렇게 된 것도 있습니다. TF와 IDF가 원래 각각 별도로도 쓰일 수 있기 때문이기도 합니다.

Document Frequency를 왜 역수를 취하는지는 뒤에 설명하겠습니다.

TFIDF 계산

자 이제 TF와 IDF를 합치면 공식이 완성 됩니다. IDF는 DF의 역수이므로 TF를 DF로 나누면 그게 TFIDF가 됩니다.

물론 이게 전부가 아닙니다. 아직 계산법 연습도 안했고 설명을 안한 것이 더 많습니다.

TFIDF weighting scheme

TFIDF를 대충 알았으니 이제 원래의 전체 명칭을 다시 살펴보죠. TFIDF는 위에서 설명했고 (예제를 두고 다시 설명할 것입니다만)

나머지 부분을 해석하면 다음과 같습니다.

  • weighting = 가중치를 부여하는
  • scheme = 계획, 방안

완전하게 해석하면

TFIDF weighting scheme = TFIDF를 사용하는 가중치를 부여하는 방법

이 됩니다.
간단히 의역하자면 “TFIDF: 가중치를 주는 방안(또는 설계)”이라는 뜻이 됩니다. 방안이기 때문에 원래 TFIDF는 정해진 공식은 없고 TF를  DF로 나누는 컨셉을 가진 것을 모두 TFIDF weighting scheme이라고 부릅니다.

앞서 공식에서는 단순히 TFIDF가 TF를 DF로 나누지만은 않고 뭔가 계산을 좀더 한 것을 볼 수 있습니다. 그런 의미로  공식이 여러 개 존재할 수 있다는 얘기입니다.

TFIDF scheme

방안이라고 해야하지만 단어가 좀 어색하니 여기에서는 이제 컨셉(concept, scheme)이라고 하겠습니다. 이 부분에 대해서 명확히 설명하지 않고 넘어왔습니다. 사실 이게 가장 중요한 것입니다. TFIDF는 문서에서 term을 추출하고 term들에 대해 가중치값을 부여하는 방법입니다. 가중치에 대해서는 나중 설명하고 TFIDF를 사용하는 컨셉이라는 것이 중요할 뿐입니다.

TF를 DF로 나누는 것에 대한 것을 이해하면 사실 TFIDF의 가장 중요한 부분을 이해한 것입니다.

TFIDF는 여러 단계를 거쳐 고쳐지고 발전했는데 대략 초기에 다음과 같은 순서로 고안되었다고 이해하시면 좋습니다.

1

어떤 문서 내에서 그 문서를 표현할 수 있는 또는 구성하는 term들 중에 상대적으로 중요한 term과 상대적으로 중요하지 않은 term이 있을 것이고 그런 방법을 누군가가 고민했습니다.  그래야 문서를 검색해서 찾거나 다룰때 더 중요한 term을 다뤄서 정확도도 더 높이고 다른 용도로도 더 유용하게 수 있다고 생각했었습니다.

2

우선 term에 어떤 중요도라는 수치를 부여할 수 있는 가장 쉬운 방법이 그 문서에서 가장 빈번하게 나오는 term의 수를 세서 가중치로 주자는  방법이었습니다.  단순하게 term이 그 문서에서 몇 번 나오는지 세서 그냥 부여하고 쓰자는 것입니다.
이게 앞에서 설명한 TF이지요.
그런데 이게 문제가 있습니다.
우리말에서는 은, 는,이, 가와 같은 조사들이 너무 빈번하게 나오는데 사실 이 조사들은 어느 문서에서나 흔하게 나오는 것들입니다. 물론 조사를 겉어내고 명사면 쓰면 되지만 명사만 쓰더라도 사람, 생각 같은 정말 흔하디 흔한 것에 가중치가 높아지는 문제가 생깁니다.
영어라면 be 동사나 전치사, 관사 같은 것이 같은 문제를 발생시킵니다.

보통 stop word(불용어, 실제 문서에서 그리 중요하지 않은 쓸모가 없는 것들)라고 부르는 것들에 가중치가 높게 부여되는 문제가 있고 불용어가 아니더라도 정도는 덜하지만 중요하지 않은 것들 중에 문서내에서 빈번히 발생하는 것들 때문에 단순히 횟수를 카운트해서 중요도로 사용하면 문제가 생깁니다.

가장 흔한 것은 가장 중요한 것일 수도 있지만 반대로 가장 특징없이 것일 수도 있습니다.

3

그래서 다른 문서에서는 잘 안 나오지만 그 문서에서 굉장히 많이 나오거나 상대적으로 더 많이 나오는 term이 있다면 그 term에 가중치를 더 주자고 생각했습니다. 그렇게만 할 수 있다면 그 문서를 더 잘 대표하게 할 수도 있고 굉장히 중요하게 그 문서의 특징을 표현할 수 있는 것들을 잘 골라낼 수도 있을 것입니다.

이게 TFIDF의 핵심입니다.

이것을 위해서 DF(Document Frequency)를 구합니다. 즉 전체 문서를 다 스캔(scan, 다 뒤져서)해서 term이 몇개의 문서에서 나오는지를 따로 세둡니다.  모든 term들에 대해서 이것을 다 구합니다.

여기에서 중요한 것은 많은 여러 문서에서 공통으로 나오는(출현하는) term일 수록 덜 중요한 것이라고 볼 수 있습니다. 흔하디 흔한 term이라는 것입니다.
즉 결론적으로 DF의 값이 큰 term일수록 특정 문서의 관점에서 볼 때는 가치가 떨어지는 term입니다.

많은 문서에서 출현하는 term이면 중요한 term이 아닌가?
라고 생각하실 수도 있는데요.  전체 문서를 다 모아놓은 것의 입장에서는 중요할지 모르지만 각각의 문서 입장에서는 중요한 것이 아니게 됩니다.  바꿔 말하면 특정 문서의 입장에서 특정 문서의 특징을 발현해서 대표할 만큼 가치 있는 term이 아닐 가능성이 높습니다.

자 이제 2개의 컨셉을 결합합니다.

문서내에서 term의 출현횟수 / term이 출현한 문서의 (중복을 제거한) 수

위와 같이 하는데 정규화(Normalization) 비슷한 작업입니다. 위에 것을 잘 곰곰히 생각해보시면 실제로 특징을 가진 것들, 중요한 것들의 가중치가 높아진다는 것을 이해할 수 있습니다.

TFIDF값은 1보다 클 수 있기 때문에 정규화라고 부르기에 무리가  있다고 볼 수 있습니다만 이것도 정규화 과정이라고 고전 문서에 적혀 있습니다.

앞에서 말한 공식도 이런 골격으로 되어 있습니다.

이게 TFIDF의 컨셉입니다.
앞서 말했듯이 TFIDF는 TF를 DF로 나누는 방법을 말합니다.

하지만 그냥 나누지는 않고 나눌 때 단어의 출현 빈도에 의한 스케일의 문제나 여러 문제로 약간의 변형을 하게 됩니다. 그래서 여러 변형들이 생기고 여전히 조합해서 쓰고 있어서 공식에 이름을 TFIDF 1,2,3,4 라고 이름을 일일히 붙일 수도  없겠구요.
그래서 TFIDF weighting scheme이라고 묶어서 부릅니다.

TFIDF의 간단한 계산 예제

TF는 앞서 말씀드렸지만 1개의 문서내에 있는 term들이 그 문서에서 얼마나 나오는가 횟수를 센 것을 말합니다. 각각 term별로 숫자가 달라붙습니다.

이제 간단한 예제를 풀어볼텐데요.

계산방식은 공식과 다르게 기본 컨셉대로만 해보겠습니다.

아래와 같이 doc1이라는 id를 가진 짧은 문서가 있다고 하고 여기에서 명사만을 term으로 취급하고 조사와 기타 의미와는 직접 관련이 없는 품사 등은 다버리고 TF를 아주 간단한 방법으로 구해봅니다.

형태소 분석기가 있으면 좋습니다만 그건 설명 안하겠습니다.

doc1 = 무궁화꽃이 한라산에 피었습니다. 한국의 무궁화꽃은 아름답습니다.

doc1의 TF들은 구해보면 다음과 같습니다.

  • 무궁화꽃: 2
  • 한라산: 1
  • 한국: 1

단순히 단어가 몇 번 나왔는지 확인하는 것이므로 어렵지 않습니다.

doc2 라는 id의 문서를 하나 더 가지고 있다고 하겠습니다. 그리고 명사로만 TF를 뽑아봅니다.

doc2 = 무궁화꽃이 백두산에 피었습니다. 대한민국의 무궁화꽃은 아름답습니다.

doc2의 TF들

  • 무궁화꽃: 2
  • 백두산: 1
  • 대한민국: 1

2개만 하면 너무 쉬우니까

doc3이라는 문서 1개를 하나 더 추가해 보겠습니다.

doc3 = 무궁화꽃은 대한민국의 국화입니다.

doc3의 TF들

  • 무궁화꽃: 1
  • 대한민국: 1
  • 국화: 1

자 이제 지금 가진 문서가 위의 3개 밖에 없다고 가정하고 위의 것들에 DF를 구하겠습니다. 실제 현실에서는 문서가 3개밖에 없는데 굳이 TFIDF를 구하거나 그런 낭비는 하지 않겠지요. 현실에서는 적게는 수만개 많게는 수억개가 있다고 생각해야 합니다.

DF는 term이 나오는 문서가 몇개인지를 세는 것이기 때문에 문서별로 계산하는 것이 아니라 전체 문서에 걸쳐서 한 벌이 계산됩니다.

3개의 문서 전체의 DF들

  • 무궁화꽃: 3 (무궁화꽃이 출현하는 문서는 3개, doc1과 doc2, doc3)
  • 백두산: 1 (백두산이 출현하는 문서는 1개, doc2에만)
  • 한라산: 1 (한라산이 출현하는 문서는 1개, doc1에만)
  • 한국: 1 (한국이 출현하는 문서는 1개, doc1에만)
  • 대한민국: 2 (대한민국이 출현하는 문서는 1개, doc2, doc3)
  • 국화: 1 (국화가 출현하는 문서는 1개, doc3)

자 이제 이걸로 각 문서들에 대해서 TFIDF를 구합니다. 공식에 있는 것처럼 IDF를 구할 때 log같은거 쓰지 않고 그냥 TF를 DF로 나누겠습니다.
설명을 쉽게 하기 위함입니다.

log를 꼭 해줘야 한다고 되어 있지 않습니다. 그래서 꼭 써야 하는 것도 아닙니다

doc1의 TFIDF 값들 (log 안 쓴 어설픈 버전)

  • 무궁화꽃: 2/3=0.66
  • 한라산: 1/1=1
  • 한국: 1/1=1

doc2의 TFIDF 값들 (log 안 쓴 어설픈 버전)

  • 무궁화꽃: 2/3 = 0.66
  • 백두산: 1/1=1
  • 대한민국: 1/2=0.5

doc2의 TFIDF 값들 (log 안 쓴 어설픈 버전)

  • 무궁화꽃: 1/3 = 0.33
  • 대한민국: 1/2=0.5
  • 국화:1/1=1

위의 결과를 보시면 모든 문서 3개에서 공통으로 출현하는 “무궁화꽃”은 각 문서의 TFIDF값을 보면 상대적으로 낮은 것을 알 수 있습니다.
반면 백두산, 한라산, 국화 같은 것은 1로 비교적 높습니다.

각 문서에서 계산된 TFIDF값이 가장 높은 것이 각 문서내에서는 가장 중요한 단어들입니다. 가중치가 부여된 것입니다.

스스로 예제를 조금씩 바꿔서 문장을 만들어가면서 해보시면 이해가 더 빠릅니다.
위의 예제는 너무 단순하고 억지로 만든 것입니다. 실제 계산을 할 때는 log를 사용해서 스케일을 맞춰가면서 하면 더 합리적이라는 것을 알 수 있습니다.

Bag of words – 단어 가방

공식을 다시 설명하기 전에 “bag of words”라는 것을 설명하고 넘어가겠습니다. 보통 TFIDF를 설명할 때 같이 설명을 하기 때문입니다.

“문서가 유사하다 유사하지 않다”는 사람이라면 문서를 읽어버고 판단하면 되지만 기계는 모든 것을 수치화해서 수리적으로 계산할 수 있게 해주어야 합니다.
그러려면 문서를 숫자로 표현해야 합니다.
그런데 문서를 숫자로 표현하기가 참 애매하기 그지 없습니다.

그래서 문서내 출현하는 단어들을 출현 순서를 고려하지 않고 갯수를 세거나 TFIDF처럼 이렇게 쿵 저렇게 쿵해버립니다. 이렇게 순서를 고려하지 않고 단어의 집합으로 취급하는 것을 “bag of words”라고 합니다. TFIDF가 부여된 단어 집합들을 순서 없이 쓰면 “bag of words”가 됩니다. 코사인 유사도역시 순서를 고려하지 않게 계산하기 때문에 “bag of words”방식의 유사도 계산이 됩니다. 순서를 고려하게 되면 매우 복잡해지는데 그것도 여기서는 다루지 않겠습니다.

TFIDF 공식 설명

아직까지도 공식 설명을 제대로 하지 않았습니다.

어차피 컨셉은 TF를 DF로 나누면 되는 것이니까요. 아주 오래전에는 TFIDF는 그냥 TF를 DF로 나눠서 쓰기도 했다고 합니다. 하지만 상황이나 문서의 집합이나 문서의 종류들이나 이런 것 주변 문제들로 인해 공식을 조금더 각각의 문제를 해결하는데 더 합리적인 방법으로 변형하거나 계량하기도 했습니다. 그래서 공식은 많습니다만 여기서는 아래의 공식으로 하겠습니다.

TF 공식 설명

\begin{aligned}\huge{t{f_{ij}} = \frac{{{f_{ij}}}}{max\{ {f_{1j}},{f_{2j}},{f_{3j}},\ldots,{t_{\left| v \right|j}} \}},}\end{aligned}

보통 TF에 대해서 term의 빈도수를 구하라는 것은 공식으로 되어 있지 않고 의사코드(Pseudo code)나 설명으로 하는 것이 많습니다. 그래서 공식에 왜 TF구하는 것이 없냐고 의문을 갖지 마세요.

앞의 예제에서는 TF는 갯수만 세면 된다고 했는데 위의 공식을 보면 갯수를 세고 난 뒤에 계산을 한 번 더 하는 것이 조금 다르다는 것을 알 수 있습니다.

우선 표기(annotation)에 대한 설명이 빠졌는데 j는 문서들 중에 1개를 말합니다. 문서가\begin{aligned}\huge{N}\end{aligned}개 있다고 생각하시면 됩니다.\begin{aligned}\huge{N}\end{aligned}는 뒤의 공식에 나옵니다. i는 문서 내에서의 term의 순번을 말합니다. 즉 문서내에 있는 term 중에 하나라는 뜻입니다. \begin{aligned}\huge{f}\end{aligned} 는 frequency를 뜻합니다. 그냥 갯수를 세면 됩니다.
max가 들어간 것이 문제인데 max를 구하고 term의 수를 나누게 되는데 문서에서 구한 TF값들 중에 가장 큰 것으로 각각을 모두 나누라는 것을 말합니다.

문서들은 단어가 몇개 안되는 것도 있고 굉장히 많은 단어들을 가진것도 있습니다. 길이가 각각 다르지요. 길이가 긴 문서내에서 한 단어가 너무 반복해서 나오면 수치가 커지는 경향이 있어서 정규화를 한 것입니다.
그것 뿐입니다.

IDF 공식 설명

\begin{aligned}\huge{id{f_i} = \log \frac{N}{{d{f_i}}}.}\end{aligned}

DF도 다른 것은 없습니다.  DF를 구하는데  1/DF가 아닌 N/DF 이고 log를 취했습니다.
이 부분 설명이 쉽게하기 어려운데요. 사실 IDF의 공식이 왜 저렇게 되어 있는지를 이해했다면 TFIDF를 다 이해한 것이나 마찬가지입니다.

Spa¨rck Jones라는 사람이 IDF에 대한 논문을 처음 썼을때 이 부분에 대해서 자세히 설명하지도 않았다고 합니다. 그래서 다른 논문에서 이게 원리가 왜 이런지에 대한 해석이 있습니다.

IDF는 DF로 단순히 TF를 나누는 무식한 방법을 그대로 쓰기 보다는 IDF를 하나의 확률값으로 처리하는 것으로 개선했다고 합니다. 확률이론을 도입한 것입니다. 확률 이론을 도입한 이유는 가장 DF가 큰 것을 1이 되게 하고 싶은 것이고 그래서 IDF들의 덧셈 연산이 가능하도록 하고 싶었다고 합니다.

확률이 가장 큰 것은 1이고 확률은 항목이 같으면 더할 수 있습니다.

IDF의 덧셈연산이 왜 필요했는지는 정확히 이해하지는 못하겠습니다. 제 생각으로는 증분 업데이트 때문 일 것 같습니다.

계속해서 문서에서 어떤 term이 출현할 확률이 얼마인가로 IDF를 계산하도록 바꿔서 써보면 원래 이렇게 됩니다.
\begin{aligned}\huge{\frac{df}{N}}\end{aligned}

N은 전체 문서의 수이고 DF는 term이 출현한 문서의 수 이니까요.
역수(inserse)를 하기 때문에 위아래를 바꿉니다.
\begin{aligned}\huge{\frac{N}{df}}\end{aligned}
이렇게 됩니다.

공식에서 볼 때 log를 씌운 것도 의문일텐데요.  이건 위키피디아 문서 지프의 법칙과 Zipf’s law를 읽어 보면 됩니다.  물론 시간관계상 나중에 읽어 보셔도 됩니다.

log를 씌운 이유에 대해서 먼저 복잡하게 설명하면
문서 집합 내에서 단어의 빈도에 대한 분포를 보면 가장 적게 나타나는 것 부터 2의 배수로 증가하는 경향이 있습니다. 이것을 선형스케일로 바꾸려면 밑수가 2인 log를 씌우면 됩니다. 하지만 밑수가 2인 log나 자연로그나 별차이가 없어 그냥 자연로그인 log를 씌운 것입니다.

간단하게 설명하면
단어의 문서내에서 출현 빈도를 테스트해서 구해봤더니  가장 많이 출현하는 것에서 부터 그 다음으로 갈 수록 반절씩 감소하는 경향이 있더라! 라는 것입니다.

실제로 몇개의 문서에서 term들을 추출하고 빈도를 시각화해 보면 그렇다는 것을 볼 수 있습니다

그래서 모든 문서에서 빈번하게 나타타는 단어와 아닌 단어의 빈도수의 정도가 서로 다르고 차이도 커서 그것을 고르게 차이가 나도록 보정한 것입니다. 이 것도 정규화(Normalization)의 일종이고 스케일을 보정해 준 것입니다.  더 자세한 원리가 궁금하시면 관련 논문을 찾아보는것이 좋겠습니다.

TFIDF 공식 설명

\begin{aligned}\huge{{w_{ij}} = t{f_{ij}} \times id{f_i}.}\end{aligned}

w는 weight를 말하는 것입니다.  즉, TFIDF를 말합니다. TFIDF는 TF와 IDF를 그대로 곱하면 됩니다. 뭐 별것이 없습니다.

위의 예제에서의 계산법도 실제로는 위의 공식으로 계산하셔야 합니다. 계산은 사실 계산기를 쓰거나 짜면 됩니다만 시간 날 때 직접 해 보시는 것을 권합니다.

Term vector – 텀벡터

위에서 “bag of words” 방식으로 각 문서들을 term에 수치값(TFIDF값 같은 것들)을 부여해 놓은 것을 텀벡터(term vector)라고도 합니다. 이 텀벡터를 이용해서 유사도 같은 것을 구할 수 있거나 여러가지 연산을 할 수 있습니다.

코사인 유사도(Cosine Similarity)도 이 텀벡터를 가지고 계산하는 것입니다. 텀벡터에 부여된 수치가 반드시 TFIDF여야 한다는 것은 없습니다만 일반적으로 TFIDF를 가장 많이 쓰는 것 같습니다.

부족한 것은 나중에 보강하기로 하고 설명은 여기까지입니다.
역시 써놓고 보니 두서없이 무지 장황해졌습니다.

여기까지 읽으셨다면 인간승리입니다.

Cosine Similarity – 코사인 유사도

대부분의 과학기술에 대한 설명은 위키피디아에 다 설명이 되어 있습니다. 코사인 유사도 역시 위키피디아에도 설명이 잘 되어 있습니다. 하지만 위키피디아가 대부분 그렇듯이 조금 불친절한 감이 있습니다.

한국어 위키피디아 보다는 영문 위키피디아가 정리가 잘 되어 있습니다.  만약 위키피디아의 내용을 참고하실 것이면 영문위키피디아의 내용을 보는 것이 더 나을 것 같습니다.

이 포스트는 조금 쉽게 풀어서 설명하려다 보니 내용이 조금 깁니다. 그러니 시간 여유를 두고 보셔야 합니다.

코사인유사도는 대체 뭘까?

200px-Dot_Product.svg

위키피디아와는 상관없이 제 나름대로 코사인유사도를 설명하면
두 벡터(Vector)의 사잇각을 구해서 유사도(Similarity)로 사용하는 것을 말합니다.

이때 유사도를 구할 때 두 벡터 사이의 각을 코사인(Cosine)으로 구해서 유사도값으로 사용하기 때문에 코사인 유사도(Cosine Similarity)라고 부릅니다.

그게 전부입니다.

벡터의 유사도를 구하는 방법은 여러가지가 있습니다. 코사인 유사도는 그 중 하나입니다. 다른 것과는 다르게 코사인 유사도의 특징은 사잇각을 이용한다는 것입니다.

위에 간단한 그림이 있었습니다.   그림을 보시면
A와 B는 유사도를 계산할 두 벡터(vector, 또는 두개의 수열값 세트)이고 두 벡터의 A와 B의 사잇각 쎄타를 코사인으로 구하는 것이고 이 사잇각이 코사인 유사도로  사용합니다.

참고로 위의 그림에서 두 벡터는 2차원 벡터를 표현해 놓은 것입니다. 축이 2개있는 평면이니까요.  하지만 벡터는 2차원 이상의 고차 벡터가 더 많습니다.  즉 축이 더 많다고 생각하면 됩니다.  3차원까지는 입체이고 4차원 부터는 못 그립니다.

벡터의 차원에 대해서 잠깐 설명하고 넘어가면 10차원 벡터는 아래와 같습니다.

10차원의 두 벡터의 예:

  • A = 1,2,3,4,5,6,7,8,9,10
  • B = 2,3,4,5,6,7,8,9,10,11

A와 B는 각각 수열이고 각각 10개씩 숫자를 가지고 있으므로 10차원의 벡터입니다. 10차원 벡터는 눈으로 볼 수 있게 시각적으로 표현할 수 없습니다. 그 보다 숫자들이 하나씩 더 있으면 11차원이고 그렇습니다.

수학 수업에서 아마 배우셨겠지만 또는 잊어버리셨겠지만 (괜찮아요. 다들 그래요) 3차원까지는 시각적으로 표현이 가능하지만 4차원부터는 인간의 눈으로 볼 수 있게 시각적 표현은 불가합니다. 인간이 통제할 수 있는 차원이 3차원까지 이기 때문입니다. 그 이상은 머리속으로 추상적으로만 연상(imagination)을 하셔야 합니다.

하지만 2차원이든 100차원이든 시각적으로 표현이 불가해도 코사인 유사도는 정해진 공식으로 구할 수 있고 구하는 방법도 간단합니다.

실제로 구하는 풀이는 뒤에 설명드리겠습니다.

코사인 유사도의 용도

계산법을 보기전에 아마도 많은 분들이 궁금할 것이 “두 벡터의 유사도를 구해서 어디에 쓰는가?” 라는 것일텐데요. (선형대수학을 깊이 공부하지 않으셨거나 관심이 없으셨다면 그럴 것입니다). 이걸 알게 되면 사실 코사인 유사도를 이해하는 것이 더 쉽습니다.

우선 그전에

벡터는 무엇이고 유사도는 무엇인가?

라는 생각이 든다면  고교수학과정에서 배우신 것을 다 잊어버리셨거나 자체 검열로 기억에서 삭제하셨을 가능성이 큽니다. 어쨌든 이해를 위해서는 그것 부터 다시 복습하고 오셔야합니다. 기억하시는 분들이 이부분은 건너 뛰셔도 됩니다.

고등학교 수학책을 보면 두 벡터의 내각을 구하는 것으로 코사인 유사도가 이미 나와있습니다. 아마도 상당수의 분들은 배웠다는 얘기일 것입니다.  요즘은 선택에 따라서 건너 뛸 수도 있다고 하던데 저는 꽤 옜날 사람입니다.

전공이 공학이나 자연과학 계열이라면 대학에서는 대학수학, 공업수학이나 이산수학에도 초반부에 아주 가끔 나옵니다.  물론 대학교 교재같은 것에서는 공대생이여 “이쯤은 이미 다 알고 있지?”  라는 식으로 가볍게 나옵니다.  대략 반페이지만 설명하는 책도 많습니다.

이 부분을 가볍게 건너 뛰는 것은 이것을 설명하려면 벡터부터 설명을 해야하는데 그러면 너무 장황해지고 이미 고등학교에서 많은 시간동안 배웠다고 가정하기 때문입니다.

벡터는 원점에서 부터 어떤 방향을 가르키는 수의 열이라고 생각하시면 됩니다. 위에서 잠깐 설명드린 것 처럼 숫자가 1개 있으면 1차원벡터, 2개있으면 2차원 벡터, 100개면 100차원 벡터입니다.  물론 물리적으로 설명하면 조금 다르겠습니다만 그것까지는 안하겠습니다.

유사도는 비슷한지 아닌지를 나타내는 추상적인 개념이고 코사인 유사도에서의 유사도는 위에서 말씀드렸습니다. 유사도 또한 따로 포스팅을 해야 할 만큼 양이 방대합니다.  넘어갑니다.

코사인 유사도의 용도

코사인 유사도는 대충 다음과 같은 구체적인 용도가 있습니다.

  1. 검색 엔진에서 검색어(Query)와 문서(Document)의 유사도를 구해서 가장 유사도가 높은 것을 먼저 보여주기 위한 기본 랭킹 알고리즘으로 사용됩니다.
    그렇다고 검색 랭킹을 이것으로 다 하는 것은 아닙니다. 그냥  매우 기본으로 쓰이는 것입니다. 정보추출관련 책이나 자료를 찾아보시면 벡터 스페이스 모델 (Vector Space Model)에서 문서(Document)들간의 유사도를 구하기 위해서 쓴다고 되어 있을 것입니다.
    그래서 Consine Similarity(코사인 유사도)라고 말하면 문서의 유사도를 구한다고 대부분 생각하기 쉽습니다. 주로 거기에서 많이 등장하니까요. 하지만  꼭 거기에만 쓰이는 것은 아닙니다.
    정보검색이나 검색엔진과 관련이 깊어서  코사인유사도가 항상 TF-IDF(Term Frequency – Inverse Document Frequency)와 같이 언급되는 이유이기도 합니다.
  2. 그 외에도 다른 분석이나 모형에서도 유사도를 구할 때 사용합니다. 가끔 나옵니다만 흔하지는 않습니다. 이걸 사용해서 할 만한 것이 예상 외로 적습니다. 두 벡터의 유사도를 각으로 계산할 일이 있다면 쓰입니다. 문서에만 쓰이는 것은 아닙니다. 구체적인 예는 이제 생각이 잘 안납니다.  코사인유사도가 그렇게 다양하게 쓰이지는 않는 것 같습니다.
  3. 클러스터링(Clustering, 군집화) . 군집화 모델에서도 쓰이긴 합니니다. 비슷한 것을 묶기 위해서 거리를 구하는 것이 기본인데 벡터의 유사도를 추출하는데 쓰는 거리계산법의 하나입니다. 클러스터링을 모르시면 그냥 패쓰! 벡터 2개의 유사도를 구한다고 했지만 벡터 2개만 가지고는 유사도값이 하나만 나오기 때문에 아무짝에도 쓸모가 없습니다. 사실 2번과 같은 이유라고 보시면 됩니다.

*위의 1번의 검색 랭킹의 문제*

검색엔진이나 텍스트 마이닝에서 주로 쓰이는 이유는 문서를 숫자로 표현하는 방법중에 가장 쉽고 잘 알려진 방법이 포함된 단어들의 출현 횟수를 세고 그걸 숫자로 만드는 것이기 때문입니다.

검색엔진에서 흔히 비교할 문서들은 검색엔진의 검색창에 입력한 질의어(query라고 합니다)와 검색엔진이 가지고 있는 문서들을 비교해서 가장 비슷한 것을 찾기 때문입니다. 여기서 코사인 유사도를 구하는 대상이 사용자가 입력한 질의어와 검색엔진이 가지고 있는 모든 문서들과의 쌍입니다. 그렇게 해서 코사인 유사도를 구해서 가장 유사도가 큰 것을 가장 위에 보여줍니다. (현재의 검색엔진은 이렇게 단순하게 작동하지 않습니다. 오해를 방지하기 위해서 적어둡니다).

이때 검색엔진이나 텍스트마이닝에서는 유사도를 비교할 때 단순히 단어의 출현횟수만을 가지고 문서를 수치데이터(벡터)로 바꾸지 않고 TFIDF라는 수치값을 계산해서 씁니다. 그래서 코사인유사도와TFIDF는 늘 쌍으로 같이 언급이 됩니다. 이건 나중에 따로 설명하겠습니다. (TFIDF에 대한 포스트를 참고하세요)

*위의 3번의 클러스터링에서의 문제*

클러스터링에서의 거리 계산은 모두 연산 자원 문제와 관련이 있습니다. 코사인 유사도 역시 그렇습니다.

유사도를 구하는 목적의 근본적인 목적이 AB와 유사한지 AC가 더 유사한지와 같은 상대적인 비교를 하기 위한 것입니다.

A와 B가 둘만 있다면 둘을 비교해서 둘이 얼마나 유사한지는 사실 알 수 없습니다.  알 필요도 없습니다.

예를들어 세상에 사람이 둘 만 남았는데 두 사람은 비슷하게 생긴 사람일까요? 전혀 다른 사람일까요? 모릅니다.

즉 A와B, C, …등등이 있으면 가장 유사한 것들끼리 묶어보거나 A와 가장 비슷한것을 B, C 와 같은 것 중에서 찾아서 고르는 경우가 대부분이기 때문입니다. 그래서 여러 개의 벡터를 대상으로 각각 서로 서로 쌍을 맺어 유사도를 구해서 가장 유사도가 높은 순으로 정렬해서 가까운 것 1개를 선택한다거나 여러개를 선택해서 여러가지 목적으로 사용하게 됩니다.

클러스터링을 할 때도 마찬가지겠지요 벡터의 개수 즉, 비교할 데이터가 n개고 벡터로 표현할 수 있다면 \frac{n \times (n-1) }{2}번 만큼 연산을 해야 합니다. RDMBS에 100개의 레코드가 있고 컬럼이 여러개 있는데 모두 숫자라면 각 레코드들 간의 유사도를 모두 구하면 \frac{100(100-1)}{2} 만큼 유사도값을 뽑아야 합니다. 에… 계산하면 4950번 입니다.

코사인 유사도를 위한 전제 조건

  • 두 벡터의 원소들은 모두 양수(플러스!)여야 합니다. x, y 직교 좌표축에서 1사분면에 오는 것들입니다. (모눈종이에서 중심을 기준으로 오른쪽 위)
    그래서 원소들이 음수가 되지 않는 문제에만 갖다 씁니다.
  • 벡터의 원소수는 같아야 합니다.
    너무 당연한 것입니다. 비교하는 벡터의 원소 갯수가 일치하지 않으면 각각 빠진 것을 0으로 채워서 동일하게 만들어야 합니다. 벡터의 원소 갯수가 좌표축에서의 축의 갯수이기 때문입니다. (ㅇㅇ?)

코사인 유사도의 특징

1사분면의 두 벡터의 코사인 값은 0 ~ 1 사이의 값입니다. 벡터의 각이 작을 수록 1에 가까워지고 클수록 0에 가까워집니다. 따라서 결과를 재가공(rescaling)하지 않고 바로 쓰기 편합니다. 두 벡터가 정확히 직교이면 값이 0이 됩니다.

삼각함수에 나오는 얘기이기 때문에 기억을 하고 있다면 좋겠습니다만… 기억 안나는 분들이 많으시겠죠?

공식

\text{similarity} = cos(\theta) = {A \cdot B \over |A| |B|} = \frac{ \sum\limits_{i=1}^{n}{A_i \times B_i} }{ \sqrt{\sum\limits_{i=1}^{n}{(A_i)^2}} \times \sqrt{\sum\limits_{i=1}^{n}{(B_i)^2}} }

아주 간단한 공식입니다. 고등학교 수학교과서에도 분명 나옵니다.

졸업한 지 오래된 분들이나 이공계가 전공이 아닌 분들은  배우지 않았거나 기억이 안날 수도 있습니다.

매우 쉽기 때문에 한 번 이해를 하고 나면 볼 필요도 없습니다.  앞에서 말씀드렸지만 아예 설명도 안하는 경우도 많습니다.
이 포스트에서는 가능한 자세히 설명을 적어 보겠습니다.

먼저 공식에서 분자 부분과 분모 부분을 나눠서 설명하면 다음과 같습니다.

분자 부분 – 벡터 내적 (vector inner product, dot product)

코사인 유사도 공식에서의 분자 부분은 벡터의 내적(dot product)을 구하는 것입니다. 영어로는 “닷프러덕”이라고 발음합니다. (유튜브 동영상으로 공부하실 것이면…)

\ll A \cdot B \gg 이 벡터의 내적(dot product) 표기입니다.
벡터의 내적은 계산이 매우 쉽습니다.
두 벡터의 각 원소들을 순서대로 짝맞춰서 곱한 다음에 결과들을 다 더하면 됩니다.
바로 밑에 예제를 풀어두었습니다.

아래와 같은 두 벡터가 있다고 하겠습니다. 차원이 5차원인 2개의 벡터입니다.  요소가 5개이기 때문에 5차원입니다.  (외계인이 산다는 그 5차원이 아닙니다) 값은 현실의 예제가 아닌 제가 임의로 마구 넣은 것입니다.

A = (1,2,3,4,5)
B = (6,7,8,9,10)

  • 각각 짝을 지어 잘 곱합니다. 순서를 맞춰서 잘 해줍니다.
    1 \times 6 = 6
    2 \times 7 = 14
    3 \times 8 = 24
    4 \times 9 = 36
    5 \times 10 = 50
  • 곱한 것을 다 더합니다.
    6 + 14 + 24 + 36 + 50 = 130

위의 과정이 벡터의 내적을 구한 것입니다.
끝~ 입니다. 수고하셨어요.

그런데 여기서 벡터의 내적이 왜 나오는지 궁금할 수 있습니다. 각을 구하는데 왜 저런게 필요하지? 뒤에 설명하겠습니다.

분모 부분 – 두 벡터의 크기를 곱한다

분모 부분은 두 벡터의 크기를 각각 구해서 곱하면 됩니다.

|A|는 A벡터의 크기를 말합니다.
|B|는 B벡터의 크기를 말합니다.

분모는 두벡터의 크기를 구해서 곱하면 되는데요 벡터의 크기(norm 이라고 부르는…)가 기억이 안나실 수 있는데요. 원점에서부터의 거리를 말하는데. 이건 기하학적으로 보면 사실 ‘피타고라스 정리‘에서 직각삼각형의 빗변을 구하는 것을 말합니다.
그런데 2차원까지는 직각삼각형인데 3차원부터는 입체가 되고 4차원부터는 아예 모양을 상상도 할 수 없게 됩니다만 그래도 피타고라스 정리로 구할 수 있다고 수학자들이 증명해 놓았습니다. 믿고 쓰면 됩니다.

벡터의 길이는 피타고라스 정리를 사용하면 구할 수 있고 그걸로 2개의 값을 구해서 서로 곱하면 분모 부분은 완성됩니다.

직각삼각형의 빗변의 길이 구하기를 기억하신다면 좋겠네요. 

C=\sqrt{ A^2 + B^2 }
  • A벡터의 크기를 구합니다. 피타고라스 정리.
\sqrt{ 1^2 + 2^2 + 3^2 + 4^2 + 5^2 } = 7.4161984870957
  • B벡터의 크기를 구합니다. 피타고라스 정리.
\sqrt{6^2 + 7^2 + 8^2 + 9^2 + 10^2} = 18.1659021245849
  • 이제 마무리로 구한 것을 곱합니다
7.4161984870957 \times 18.1659021245849 = 134.7219358530751

숫자값들이 소숫점 뒤로 길게 나와서 복잡해 보이지만 별거 아닙니다. 뭐 계산은 계산기나 컴퓨터가 하는 거니까요.

마무리 계산 – 분자를 분모로 나누기

이제 다 구했으니 분자를 분모로 나눕니다.

\frac{130}{134.7219358530751}=0.9649505

위에 계산된 결과 값이 코사인 유사도 값입니다. 약 0.96이네요.

풀어놓고 보니 별거 아닙니다.
R 코드로 풀어보면 이렇습니다.

R도 되지만 Pyhon이나 다는 것도 당연히 계산이 됩니다.  그리고 위의 코드에도 나와 있지만 특별한 경우가 아니라면 굳이 계산식을 따로 구현할 필요는 없습니다. 함수가 다 제공되고 있습니다.

참고: 여기저기 자료를 더 찾아 보시면  코사인 유사도는코사인 제2법칙에서 유도했다고도 되어 있을 것인데 저는 유도까지는 못해드립니다. 귀찮아서요. 검색해서 찾아보면 아마 누군가 유도해 놓은 것이 있을 것입니다.

공식은 그렇다치고 내적이 왜 필요한데?

200px-Dot_Product.svg

저 위의 삼각형 그림을 다시 가져와서 보면서 설명합니다.

코사인 법칙은 피타고라스 정리에서 출발했기 때문에 코사인값을 구하려면 두 벡터가 만드는 내부의 도형이 직각삼가형이어야 합니다. 그런데 위의 그림을 보시면 A, B와 원점이 만드는 도형이 직각삼각형이 아닌 것을 알 수 있습니다.

직각삼각형이 되는 것은 위의 그림에서는 |A|와 B와 원점입니다. 그래서 |A|의 길이를 알아야 합니다. 이 길이를 알아내는 방법이 벡터의 내적을 이용하는 것입니다.

A와 B의 두 벡터가 있을 때 A와 B의 내적을 구하면 B 곱하기 |A| 또는 A 곱하기 |B|를 구할 수 있습니다.

여기서 |A|는 A를 B의 벡터의 선상(또는 연장선상)으로 직교(직각)이 되게 그대로 내린(정사영한다고 표현합니다) 곳과 원점까지의 거리입니다. |B|는 반대편으로 B를 정사영 한 것입니다.

B 곱하기 |A| = |B| 곱하기 A

어느쪽으로 하던지 두 값은 동일합니다. 왜 동일한지까지 설명하려면 지면이 너무 많이 필요해서 생략하겠습니다.

결국 두 벡터의 내적을 구해서 벡터 하나의 크기로 나누면 |A| 또는 |B|의 길이를 구할 수 있어서 직각삼각형을 만들 수 있습니다. 그러면 비로서 코사인값을 계산할 수 있게 됩니다.

그래서 두 벡터가 유사한지 어떻게 알 수 있는가?

이름이 코사인 유사도이니 이것의 용도가 어떤것이 유사한지 아닌지를 확인하는  것이라는것은 유추할 수 있는데 두 개의 벡터만으로는 서로 유사한지 아닌지를 그냥 알기 어렵습니다.  유사한지 아닌지와 가까운지 먼지 판단하는 기준은 상대적인 것입니다. 물론 절대적인 기준값을 하나 정해놓고 유사하다 아니다를 결정하는데 사용해도 됩니다. 하지만 그 기준값은 직접 결정해야 합니다.

위에서 잠깐 설명했지만 코사인의 특징으로 두 벡터의 각이 호도법으로 0도가 되면 코사인 유사도값은 1이되고 호도법으로 각이 커질수록(90도에 가까워 질수록) 0에 가까워진다는 것입니다.  조금 풀어서 설명하면 코사인유사도가 0 또는 Inf가 되면 전혀 유사하지 않은 직교(orthogonal)가 되고 1이 되면 두 벡터의 원점으로부터의 방향이 완전히 겹치게 됩니다.  그런데 이것만으로는 유사한지 아닌지를 판단하기 어렵습니다. 호도법으로 45도 보다 각이 작으면 유사하다고 해야 할까요?

유사도는 상대적인 개념이기 때문에 벡터 2개로는 두 벡터가 유사한지 아닌지를 알기는 어렵습니다.

그래서 N개의 벡터가 있고 A라는 1개의 벡터가 있을때 A벡터와 가장 가까운 벡터를 N개 중에서 찾을 때 코사인 유사도를 사용해서 코사인 값이 가장 큰 것을 선택해서 사용합니다. 당연히 코사인값은 N번 계산해야 합니다.

A벡터가 상대적으로 가장 가까운 벡터는 어떤 것인가를 구하는데 씁니다.

어째서 두 벡터의 거리를 계산하지 않고 각을 사용하는가?

두 벡터가 가까운지 아닌지를 찾는 방법중에 가장 쉬운 것이 직선거리를 계산하는 유클리디안 거리(Euclidean distance)입니다.  유클리디안 거리의 문제점은 각 축의 수의 크기에 따라 영향을 크게 받는다는 것입니다.  축이 수량값을 나타내는 것이고 각축의 값들이 매우 큰 벡터들가 매우 적은 벡터들이 섞여 있다면 벡터의 성향보다는 양적수치가 비슷한 벡터끼리 가깝게 계산되는 경우가 많습니다.

벡터의 각 축의 값들의 차이가 매우 큰 경우에는 특히 유클리디안 거리는 이상한 결과를 보일 수도 있습니다.

텍스트마이닝에서의 코사인 유사도

코사인 유사도는 텍스트 데이터(텍스트 마이닝)에 사용하는 경우가 많습니다.  물론 다른 곳에도 많이 쓰입니다만 자료를 찾아보면 눈에 쉽게 띄는 쪽은 텍스트 마이닝과 관련된 것 입니다. 텍스트에서 추출한 텀(term, 단어, 색인어)들의 빈도의 분포가 지수 스케일이기 때문에 벡터의 사잇각을 두고 비슷한 방향인지 아닌지를 보는 방법이고 이게 비교적 합리적인 방법이기 때문입니다.

그리고 검색엔진에서 질의어로 본문을 찾아서 유사한 것을 찾는데 질의어와 본문이 가지고 있는 단어들의 빈도수 같은 것의 양적차이가 매우 크기 때문에 코사인 유사도가 유리합니다.

텍스트마이닝에서 코사인 유사도의 주의점

텍스트 데이터는 분량(데이터 사이즈)이 많기 때문에 코사인유사도 값을 구하려고 해도 현실에서는 컴퓨터 연산이 많이 소모되어서 하지 못하는 경우도 있습니다. 이런 작업을 하려면 사실은 대부분의 경우 분산 프로세싱을 수행해서 구해야 합니다.  크기가 적당하다면 RDBMS를 사용하고 아니면 Hadoop이나 Spark같은 분산 컴퓨팅 환경에서 작업해야 할 수도 있습니다.

Excel이나 R, Python으로는 계산하기에 너무 무거울 정도로 문서가 많고 그 상황에서도 코사인유사도 계산을 해야 한다면 위의 과정을 이해하는 것이 문제해결을 위해서 좋습니다.

요즘은 빅데이터 플랫폼들이 좋아서 위의 간단한 계산 방식만 이용하면 빅데이터 플랫폼으로 어렵지 않게 대량의 벡터들이나 텍스트데이터의 유사도를 구할 수 있습니다.

텍스트 데이터를 가지고 코사인 유사도(Cosine Similarity)를 구해서 문서간의 유사도를 구하는 것은 다음 포스트에 해 보겠습니다.

TFIDF – Term Frequency Inverse Document Frequency

numpy windows용 64bit 버전

Windows를 비롯해서 numpy를 설치하는 것이 쉬운일이 아닌데요.
그래서 따로 패키징된 것을 제공하는 곳이 몇군데 있습니다.
그중 대표적인 곳이 scipy.org 입니다.
numpy는 scipy.org에서 패키징된 버전을 받을 수 있도록 링크를 추천하고 있는데
32bit 버전만 제공하고 있습니다.
32bit용 numpy를 64bit python에 설치하게 되면 python이 없다고 에러메세지가 나옵니다.

  • numpy는 python에서 수학/과학 계산을 위해서 사용하는 라이브러리입니다.
  • scipy를 사용하기 위해서는 numpy가 필요합니다.

아래 사이트에서 공유하고 있습니다.
접속해서 OS와 Python 버전에 맞는 것을 선택해서 다운로드해서 실행하면 쉽게 설치할 수 있습니다.

http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

사이트의 반응 속도 및 다운로드 속도가 조금 느립니다.

각종 도구로 선형회귀(Linear Regression)해보기

오다카 토모히로의 만들면서 배우는 기계학습에 나오는 예제를 여러가지 도구로 각각 간단히 선형회귀(Linear regression)을 하는 방법을 적어봅니다.
(이 정도는 뭐로 하든 한가지만 잘해도 충분한겠습니다만)
선형회귀는 간단히 설명하면 독립변수 X에 대한 종속변수 Y의 값들을 이용해 제곱합이 최소가 되도록 하는 1차식을 도출하는 방법입니다.
예측을 하거나 추이를 살펴보기 위한 방법으로 가장 쉬운 방법 중 하나인데
보통 입력값은 X값들, Y값들이고 출력은 절편(Intercept)과 기울기(Slope)이고 추가로 몇가지를 더 도출할 수도 있습니다.
최소자승법으로 결과를 구하기 위해서 1차식을 제곱합을 구하는 것으로 바꾼다음 각 항을 편미분해서 나온 식에 입력값들을 대입해서 절편과 기울기를 구하게 됩니다.
식은 구글에서 검색해 보시거나 책들을 참조하시면 되겠습니다.

C로 하는 Linear Regression

C로 구현한 예제는 scanf를 이용해서 입력값을 키보드로 입력받고 절편과 기울기로 바로 출력하는 간단한 예제입니다.
아래에 있는 코드는 책에 있는 예제 그대로입니다.
[github_cv url=”https://github.com/euriion/TomorrowWorks/blob/master/snippets/lsm/lsm.c”]

실행을 하고 아래와 같이 진행합니다.

/* 입력 값들은 이렇게 넣고 구분은 X값과 Y값의 구분은 TAB으로 합니다.*/
// 1 2.1
// 3 3.7
// 2.5 3.4
// 3.9 3.1
/* 출력된 결과 입니다. */
// 2.010294
// 0.409502

R코드 및 플로팅

R은 이런 것은 너무 쉽습니다.
간단하게 패키지를 이용합니다.
요점은 데이터를 data.frame으로 만들어주고 lm을 이용해서 모델을 구한 뒤 화면에 결과를 출력하고 plotting 해버리면 끝입니다.
물론 plotting은 더 미려하게 할 수 있습니다만 정성과 시간이 필요합니다.
[github_cv url=”https://github.com/euriion/TomorrowWorks/blob/master/snippets/lsm/lsm.R”]

R 플로팅 결과입니다.
r_plot_lsm

Excel로 하는 선형회귀

Excel도 이런 간단한 것은 무척 쉽습니다.
값들을 sheet에 입력하고 마우스로 scatter plot을 차트에서 선택해서 quick chart를 선택하면 추이선이 그대로 그려집니다.
차트의 옵션에서 display equation을 선택하면 절편과 기울기까지 차트에 표시됩니다.
물론 절편과 기울기만 따로 구해서 식을 재적용하게 할 수 있겠지만 그렇게 하려면 조금 복잡해 집니다.
lsm.xlsx

Datagraph로 선형회귀하기

Datagraph는 Mac에서 사용하는 작은 graphing 툴입니다. 가벼우면서도 싸고 괜찮고 아주 유용한 툴입니다.
Datagraph로 하는 방법은 엑셀과 비슷할 것인데 엑셀보다는 더 쉽습니다.
Datagraph에서는 data를 입력한 후 scatter plot을 그리고 fit function으로 linear를 선택해서 넣으면 그대로 나옵니다.

fit function에서 절편과 기울기가 구해져 있는 것을 알 수 있습니다.
다른 그래프 툴에서도 비슷할 것이라고 생각됩니다.

lsm.dgraph

Python으로 선형회귀하기

Python으로 하는 방법은 직접구하는 방법과 공학용 패키지인 scipy를 이용하는 방법이 있는데 이 scipy라는 패키지가 설치하기가 무척 어렵습니다.
scipy가 제가 사용하는 mac에 잘 설치가 되지 않아서 코드를 테스트를 해보지는 못했고 대략 아래와 같이 구하게 될 것 같습니다.
복잡하지 않습니다.
[github_cv url=”https://github.com/euriion/TomorrowWorks/blob/master/snippets/lsm/lsm.py”]